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Collocation Methods for Boundary Value Problems 
on 'Long' Intervals 

By Peter A. Markowich* and Christian A. Ringhofer** 

Abstract. This paper deals with the numerical solution of boundary value problems of 
ordinary differential equations posed on infinite intervals. We cut the infinite interval at a 
finite, large enough point and insert additional, so-called asymptotic boundary conditions at 
the far (right) end and then solve the resulting two-point boundary value problem by an 
A-stable symmetric collocation method. Problems arise, because standard theory predicts the 
use of many grid points as the length of the interval increases. Using the exponential decay of 
the 'infinite' solution, an 'asymptotic' a priori mesh-size sequence which increases exponen- 
tially, and which therefore only employs a reasonable number of meshpoints, is developed and 
stability, as the length of the interval tends to infinity, is shown. We also show that the 
condition number of the collocation equations is asymptotically proportional to the number of 
meshpoints employed when using this exponentially graded mesh. Using k-stage collocation at 
Gaussian points and requiring an accuracy 0(E-) at the knots implies that the number of 
meshpoints is Q(g-i/2k) as E O 0. 

1. Introduction. In this paper the numerical solution of boundary value problems 
on infinite intervals of the form 

(1.1) y, = tf(t, Y), 1 t < oo, a O, 

(1.2) b(y(l)) 0, 

(1.3) y E C([ 1,]): y C( [ 1, oo)) and lim y(t) = y(oo) is finite 
t 00 

is considered. Here f: Rn?+ R', b: Rn -* Rk, where generally k < n holds because 
(1.3) furnishes another set of boundary conditions. f fulfills certain continuity 
properties at infinity which will be defined later. We assume that the Jacobian 
af(oo, y(oo))/ay has no eigenvalue on the imaginary axis. 

For a > -1, Eq. (1.1) has a singularity of the second kind of rank a + 1 at t = xc. 
We disregard the practically unimportant case -1 < a < 0 in the sequel. 

Problems of this kind often occur in fluid dynamics (boundary layer theory), 
quantum mechanics and electronics. For applications see Markowich [12], [13], de 
Hoog and Weiss [7], McLeod [15] and Schneider [19]. 
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For the numerical solution we proceed as follows. First the infinite interval is 
substituted by a finite but large interval and n - k additional so-called asymptotic 
boundary conditions, which reflect the asymptotic behavior of the solution y, are 
imposed at the right (far) endpoint T. We obtain a regular two-point boundary value 
problem of the form 

(1.4) xf = telf(t, x), I t -< T, 

(1.5) b(x(l)) - 0, 

(1.6) S(T)x(T) = (T). 

The condition (1.6) has to be chosen such that 

(1.7) IY-YXI[ 1,T ?O as T oo 

holds, and its construction is described in de Hoog and Weiss [8], Lentini and Keller 
[10] and Markowich [13]. 

The two-point boundary value problem (1.4), (1.5), (1.6) now has to be solved by 
an appropriate numerical method, for example by A-stable, symmetric collocation 
methods whose simplest member is the Box-scheme: 

(1.8) X i 
- t+,12f(ti+12 21(Xi+l 

+ 
Xi)), 

i O(l)(N - 1), 

(1.9) b(xo) = ?S 

(1.10) S(T)Xn = a(T), 

where to = I < tI < * < tN-1 < tN = T, ti+1 = ti + hi, ti+j12 = ti + hi/2 holds. 

It is clear that the mesh-size selection is, especially for these problems, very 
important since the amount of labor will be very large for long intervals and bad 

(too small) mesh-size choices. We do not assume a relation of the form 

(1.11) maxhi/minhi < const 
i i 

and do not formulate convergence estimates in terms of maxi hi as the standard 
theory of collocation methods does (see Weiss [20]). Too many meshpoints would be 

employed in order to admit a given bound for the global error. Codes which employ 
adaptive mesh refinement (see Lentini and Pereyra [11] and Ascher, Christiansen 
and Russell [1]) solve first with a coarse grid in order to do local error estimation. 
Therefore it is important to know a priori which mesh-size distribution is ap- 
propriate. 

In this paper we use the asymptotic form of the solution of (1.1), (1.2), (1.3) in 

order to construct an asymptotic a priori mesh by equidistributing the local 
discretization error. 

It turns out that mesh sizes which increase exponentially can be used since our 

assumptions guarantee that y(t) -- y(oo) exponentially. For a k-stage collocation 
method at Gaussian points it will be shown that the number of grid points which is 
necessary in order to achieve a total accuracy O(?-) (total accuracy refers to the 
difference between the 'infinite' solution y(ti) and the discrete approximation xi) 
equals O(&-1/2k). For this a suitable T= T(E) will be taken. Stability (as ? -* 0, 

T() xc) holds when using this equidistributing mesh. The Newton procedure for 

solving the collocation equations with these exponentially increasing stepsizes con- 
verges quadratically from a domain of starting values which does not shrink as 
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e -- 0. We also show that the condition number of the (linear) collocation equations 
(using Gaussian points) is 0(e-1/2k), so that the linear system can be safely solved 
by Gaussian elimination with partial pivoting. 

Of course, no fully implicit difference scheme (like the implicit Euler scheme) 
should be used for the integration of (1.4), (1.5), (1.6) if the fundamental matrix of 
the linearized problem (1.4) contains exponentially increasing columns which are 
scaled down by the boundary condition (1.6). This would cause instabilities during 
the integration when using large mesh sizes. 

Another way to solve problems of the kind (1.1), (1.2), (1.3) is to transform the 
'infinite' problem by a transformation t = s-, /B > 0 to the interval [0, 1] and to 
employ difference methods on the unit interval. Methods of this kind have been 
investigated by de Hoog and Weiss [6]. This way of proceeding has the disadvantage 
that a singular problem (the right-hand side of the equation is not defined in s = 0) 
has to be solved, and therefore the obtained convergence estimates are not very 
strong. Another disadvantage is that many physical problems are actually posed on 
an infinite interval (for example in boundary layer theory) such that a 'direct' 
solution is desirable. 

We remark that there is a close connection to singular perturbation problems since 
the transformation s = (t - 1)/(T- 1), t 1/(T- 1) takes (1.4), (1.5), (1.6) into 

(1.12) Ia+l = (s + lXf s + 1 ( ) 0 < s< I ,aO> 

(1.13) b(z(O))=O, 

(1.14) s( + I)z(l) =a(! 1). 

(Note that lim A0 f((s + ,u)/,u, z) = f(oo, z).) 

The already developed mesh-size sequences for singular perturbation problems 
cannot be applied without reconsideration since the linearization of the right-hand 
side of (1.12) does not generally have a series expansion in powers of y uniformly in 
0 s?s s l 1 (see Ringhofer [ 16]), since for most practical problems 

(5 00 
(1.15) ay (t, y) - Ai(y)ti, t o, 

i=O 

holds. 
Recently Ascher and Weiss [2] came up with a mesh-size sequence for linear 

constant coefficient singular perturbation problems (a = 0) (also by equidistribu- 
tion) which is equivalent to ours, and which they use within the boundary layers of 
thickness 0(tt ln y 1) (where the solution decays exponentially). Outside the layer 
they use a coarse mesh just fine enough to approximate the solution of the reduced 
problem (y = 0) well. 

This paper is organized as follows. Section 2 gives a short summary of the theory 
of boundary value problems on infinite intervals and their 'finite' approximation, in 
Section 3 step-size sequences are developed for the midpoint rule for scalar initial 
value problems, Section 4 deals with the midpoint rule for linear boundary value 
problems and in Section 5 nonlinear problems are dealt with. Higher order colloca- 
tion methods are analyzed in Section 6 and computations are reported in Section 7. 
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2. Boundary Value Problems on Infinite Intervals and Their Approximation by 
'Finite' Interval Problems-A Summary. We consider boundary value problems on 
infinite intervals of the following form 

(2.1) Y' taA(t)y + taf(t), 1 < t < ox, a > 0, 

(2.2) By(l) = /, 

(2.3) y C([1, o]), 

where the n X n-matrix A F C([1, ox]) andf E C([1, ox]). B is a matrix whose rank is 
(in general) less than n since (2.3) furnishes another set of boundary conditions. 

Let us first consider the case where A is constant. A has the Jordan form J 
obtained by 

(2.4) A = EJE-1. 

We assume that J has the block form 

[J+ 0 l}r+ 
(2.5) J= 0 J-} 

r+ r 

where the r+ r+ -matrix J+ has only eigenvalues with positive real parts and the r_ 
r_-matrix J- has only eigenvalues with negative real parts. Eigenvalues on the 
imaginary axis will be excluded for the following. The diagonal projections D+ D 

are defined by 

(2.6) D - [Ir+4 ]L 
0 l 0 

(2.7) D = [t-] 

The general solution of (2.1) (with A(t) _ A) and (2.3) can now be written as 

(2.8) y(t) = Ek(t)L1 + E(HE-1f)(t), ( C-, 

where 

(2.9) p(t) exp( ?) 

is the fundamental matrix of the transformed problem 

(2.10) u' = taJu + taE-lf(t). 

Eu = y holds and (HE-If )(t) is a suitable particular solution of (2.10) which can be 
taken as 

(2.11) (Hg)(t) = p(t) ftD+?-1(s)sag(s) ds + p(t) ftD -1(s)seag(s) ds 
00 Y 

for some y > 1. This operator has been analyzed by de Hoog and Weiss [7], [8] and 
Markowich [12]. 

H has the following properties 

(2.12)(a) H: C([y, o]) -* C([y, xc]), 

(2.12)(b) 11 H 11 r,_,, -< c, 
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where 11 II o]denotes the max-norm on [-y, ox] respectively the associated 
operator-norm. The constant c is independent of y. 

Markowich [12] has shown that if 

(2.13) f(t) = F(t)exp- ( 
F F L.i([1, o]) n C([1, oo)), X ' Xnin > ? 

holds where Xiin is the smallest modulus of the real parts of the eigenvalues of A 
which are in the left half-plane, then 

(2.14) lly(t)II < const(IIFII[l 1,] + i ii) ] 

< const(ii F 11 1,005 + II X 1) ex (Xrin + 1) )ta+1 t- 

holds. 0 s 8 < m and 8 0 as t- 00 hold. 
The boundary value problem (2.1), (2.2), (2.3) with A(t) A is uniquely soluble 

for all 3 E Rr-,f E C([1, ox]) if and only if the r Xr -matrix 

(2.15) BE4(1)[2] is nonsingular. 

Here B is assumed to be an r_ X n-matrix. So the continuity requirement (2.3) 
furnishes r+ linearly independent boundary conditions. (2.12), (2.15) imply that 
11 11 ? const(ii / 11 + 11 F 11 [lool) holds. 

The variable coefficient case A(t) Z A is treated by a perturbation approach (see 
de Hoog and Weiss [7], [8] and Markowich [12], [13]). A(oo) now plays the role of A. 
We assume that A(oo) has the Jordan form J given by (2.5). Then we can show (see 
de Hoog and Weiss [7], [8]) that 

(2.16) y(t) = E4 (t)t + E#(E-'f)(t), F cr , 

where 4j(t) is an n X r_-matrix defined by 

(2.17) +p(.) (I-H(E'A(- )E-J))'.(. )[Ir F C([y,o]) 

for y sufficiently large. For t F [ 1, y], 4Q(t) can be continuously extended. E 4(E 'f) 
is a suitable particular solution of (2.1). The boundary value problem (2.1), (2.2), 
(2.3) is uniquely soluble for every /3 F Re-, f F C([1, x]) if and only if the r_ Xr_- 
matrix 

(2.18) BE A (1) is nonsingular. 

Markowich [12] proved the estimate 

(2.19) IIy(t)Il ? const(Il F Ilu I,oo] + l/l 1) exp(- (Xr+nl7) ta?1), t ? t. 

Now we briefly consider nonlinear problems of the form (1.1), (1.2), (1.3). 
From (1.1), (1.3) we conclude that 

(2.20) f(o0, y(x)) 0 O 
has to hold. We assume that the roots y(oo) of (2.20) are isolated and take one 
particular root y*(xv) for the following. Moreover, f(t, y*(x-)) shall fulfill (2.13). 
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Defining 

CK(t, a) {(t, y) F R |t > t, l y -y*(x)l < K), 

we assume that f, fy F CliP(CK(l, y*(xo))) for a sufficiently large K, We also assume 
that the boundary value problem (1.1), (1.2), (1.3) has an isolated solution, i.e. the 
linearized problem is nonsingular. 

Now let J be the Jordan form of fy(oo, y*(x)) obtained by 

fy(xI y*(x)) = EJE'-, 

and let J fulfill (2.5) such that D +, D, are defined as in (2.6), (2.7). Then X Irin is 
defined for J as above, and +(t), 4_(t) are as in (2.9), (2.17) with fM(t, y*(x0)) 
substituted for A(t). Markowich [ 12] showed that 

(2.21) Ily(t) -y*(oo)ll < constllA (t)ll < constexp - (mi + l) ta+1) 

The isolatedness of y now implies that 

(2.22) ab WINJI) 

is nonsingular. More information on the analysis of these problems can be found in 
the above cited references and in Lentini and Keller [10]. 

We want to approximate the 'infinite' problem (2.1), (2.2), (2.3) by 'finite' 
two-point boundary value problems of the form 

(2.23) xf = taA(t)x + taf(t), 1 < t s T, T?> 1, 

(2.24) Bx(1) = /, 

(2.25) S(T)x(T) = a(T). 

Since (2.24) is a boundary condition of rank r, we assume the S(T) is an 
r+ X n-matrix. The question that arises immediately is how to construct an asymp- 
totic boundary condition S(T) such that 

(2.26) --- -X 0 1 as T] --- as Tx 

and the order of convergence should be as fast as possible. 
A complete theory of this kind can be found in de Hoog and Weiss [7] and 

Markowich [13], and therefore we only give excerpts which will be needed in the 
sequel. The basic idea is that the boundary condition (2.25) has to scale down all 
solution components of (2.23) which do not decay exponentially. 

We assume that (2.18) holds. A possible choice is 

(2.27) S-=S(T) =[Ir+O] E-1, a(T)=o0. 

It has been shown in the above cited references that this boundary condition implies 
convergence in the sense of (2.26) and that for general a(T) 

(2.28) IlY - X [1 T] S constllSy(T) - a(T)ll 

holds. In general the admissibility conditions for a boundary condition S(T) are 

(2.29) IIS(T) II S const, T-* ox, 

(2.30) (S(T)E 4r+]) | const, T -*oo. 
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Then (2.28) holds for the unique solution x of the 'finite' problem if T is sufficiently 
large. a(T) _ 0 is a natural choice for linear problems. 

If f(t) fulfills (2.13) an estimate for the order of convergence is given by the 
right-hand side of (2.19). Moreover, it has been shown that the choice (2.27) is 
optimal in the sense that the actual order of convergence exceeds (2.19) for 
homogeneous problems. 

The condition (2.25) with S fulfilling (2.29), (2.30) and a(T) = S(T)y*(xo) can 
also be used for nonlinear problems of the form (1.1), (1.2), (1.3) if the above stated 
assumptions on f(t, y) and the solution y hold. (2.28) still holds for nonlinear 
problems. So we obtain 

(2.31) y -X11 t1,T] < constllS(T)H 1q -exp(_ min T`) + 

where 

(2.32) =p max (y(t) -y*(oo)) exp( Xmi 1ta+ ? < x 

has been set. The constant in (2.31) is an upper bound for the norm of the inverse 
of the linearization of (1.4), (1.5), (1.6) at y. In order to get ly-xiI[IT] 

constllS(T)IIe, we choose 

(2.33) T = T(e) = (j ln i) , ? 1. 

The advantage of choosing p as in (2.32) is that 

(2.34) IIy(T(e)) - y*(o)jj E 

holds, such that E controls how close y(T) is to its asymptotic state y*(x0), and then 
the constant in (2.31) does not (at least for linear problems) depend on y. However, 
if no estimate on p is available, it can be incorporated into E by setting E_ = E/m. 

If the function f, which sets up the differential equation (1.1) is independent of t, a 
stronger estimate holds: 

(2.35) Ix-YI[,T ] ?<constHlS(T)IITp-exp(- (Ta+ 

if S fulfills (2.27) and a(T) = S(T)y*(oo). In this case we set 

(2.36) T = T(e) = I( n ) Ine ? 

and II x - Y || [lT(,)] < const E holds. 
For constant coefficient problems (A is a constant matrix) we can determine 8 

explicitly. In this case we obtain from Markowich [13] a sharper bound for the 
approximation error than (2.31): 

(2.37) H y- X , T] [ const S(T)I Ta+ 1) exp (_+ Ta+?), 

where r is the dimension of the largest Jordan block of A with an eigenvalue with 
real part -Xmin and 

(2.38) '; = t miax lly(t)t-(a+?)(r-1)exp +in ta+?) 
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holds. Inserting (2.33) (with 4 substituted for p) into the right-hand side of (2.37) 
and requiring that 8 s Xmin/2 and I Iy-X I I T(,)I < constll S(T(e))II r hold gives a 
lower bound for 8 depending on e 

(2.39) 3 , / (r - I)XiinIni (e) In42/ 2(a +l)lIn4' 

Obviously 8(E) 0 as E -- 0 such that 8(E) S XA/2 holds for E sufficiently small. 
8 = 8(E) can also be used for nonlinear problems if f does not depend on t. For 
variable coefficient problems whose coefficient matrix has an asymptotic series 
expansion as t - oo, a similar approach can be used for the determination of 3 by 
using the estimates given in Markowich [12]. 

3. The Scalar Case. In this section we treat the simplest case, namely scalar initial 
value problems. The aim is to construct step-size sequences for the Box-scheme such 
that the global error is less than O(E) on [1, T(Er)]. These step-size sequences will be 
used for the general boundary value problem case. 

We consider 

(3.1) y, = -Xtoy + taf(t), I t < xo, (x ,> O, 

(3.2) y(l) = y, 
where X - XI + iX2 may vary in a compact subset S1 of {z E C I Re z > 0}. 

The Box- (or centered Euler) scheme for (3.1), (3.2) has the form 

(3.3) Y+h yi=-2 ti+ 1/2( yj+ I + Yi ) + tio+ 1/2 fi+ I1/2 0, i o O YO , 

where for hi > 0 

(3-4)(a) to = 1, ti ti + hi ti/ = t + hi, i 20; 

(3 .4) (b) Ji+ 1/2 = A(ti+ 1/2) A 

holds. 
We define 

m I 2 hj t,+ I/ 2 
(3.5)(a) ym(X, h) = - I n < m; 

2 

Yn+ I,n 1 n -1 

and for a sequence of complex numbers z =(z1?1/2 )j- 
(3 5 (b)( H A ytz Sh )z) i 2 hjtj+l /2Zj+ l1/2)= 

i-' 1 +-2h.tyZ+ 12 
2 

and (H(X, t, h)z), = 0 where h = (hj)I-o is the sequence of stepsizes. 
Using these definitions, the solution of (3.4) can be written as 

(3.6) yi = Y0oi_1(X, h)yi + (H(X, to, h)f )i 

wheref (fj+1/2)j,I1 has been set. 



COLLOCATION METHODS FOR BOUNDARY VALUE PROBLEMS 131 

The local discretization error t' 1/24?1/2 of the difference scheme (3.3) is defined 
as 

(3.7) t et I2=Y(ti+ ) )h Y(t ). + 2 tei /(Y i l)+Y E) 

-+(+ 1/2 fi+ 1/2l/iy(t0, 

wherey is the solution of (3.1), (3.2). 
The global error 

(3.8) ei =y(ti)-y1 

satisfies the difference equation 

(3.9) 12( + ei) + t /2 i 0, eo = , h 2 1 + i+1 ~~~tji1/2 i1j2l 

and therefore has the solution 

(3.10) ei = (H(X, to, h)l)i 
with 1 = (l?+ 1/2)5i-I 

In order to estimate the right-hand side of (3.10), we need the following 

LEMMA 3.1. Let xj for K = n, n + 1,.. ,m, be complex numbers with Re XK > 0 and 
Im x,/Re x, s x const. Then setting K+ 1 a O for i > 1, ai E C: 

(3.11) IXK 1 +l XI4 2l+ + x2, 
K=n XK2=n II + xIi 2 

(3.12) E 
____ 

II 
K1 I _x1 < - + 

Kc-nl I+ xKI12 I=nI l+x1 2 

holds. 

Proof. An easy calculation gives 

l ?X 2 2 - I 

Substitution into the right-hand sides of (3.11), (3.12) yields telescoping sums. 
Application of Lemma 3.1 immediately gives 

LEMMA 3.2. Letf= (i+1l/2).Y I.Then for every sequence h = (hj)> with hi > 0 

(3.13) I(Hf(X, tl, h)f)il const max_ [Ji+?1/2 1 + 2 hjt+I/2 

holds for i > I uniformly for X E U. 

Proof. 

(H (X, tl, h)f) i I const max (14+1/2 (1 + h2 hJt+l/2)) 

i h ta 

X k k+l/2 Yk+?1i 1(X, h) 
k=I |1 + 2h 

and application of (3.11) yields (3.13). 
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We get from (3.10) 

(3.14) ei < const max [li+ 1/21 (1 + 2 hjJ?+1/2)] 

For the following we assume that 

(3.15) (a) f(t) = F(t) exp( > X , >I, 

holds where F, F', F" E C([1, ox)) n LL([1, ox]). 
Markowich [12] shows that (3.15)(a) implies 

(3.15)(b) y(t) I < cI(X)(1 F I[,] + I 
- 

) exp(- X1 ta+ 

where cl(X) is bounded for X EE U. 
A straightforward calculation gives 

(3.16) '1?1j/2 ? < const h2[ta H y" ' [jt+] ?+ X 11 11 [,j,,j+ 

Differentiating (3.1) and using (3.15)(b) yields 
2 

(3.17) 1/2 c2(X )h(2 EIF(K) 1l,] +?" Y tj2a 

Xep( XI tial ty t(l)(\), 

where the function t2aexp(-(X1/(a + 1))ta+l) takes its maximum over [1, xc] at 

t(l)(X). c2(X) and t(l)(X) are bounded for X EE U. 
From (3.14) we conclude that a step-size sequence hi which equidistributes the 

local discretization error (I 'j+1/2 < const ?) and which fulfills h1t> 1/2 < const 
implies 

(3.18) ei I < const?, 

where const is independent of X EE U. We set T= T(c) as in (2.33) but substitute 

(Xmin - 8) by X1. 
(3.17) implies the bounds 

co, 1 ?t y, -Y >0, 

(3.19) hi < h(XI, e, t;) {ci AtTaexp( X2( )tj+l), y < ti < T( 

for the mesh size hi at a point ti, depending on - and AI = Re A. These bounds 
increase exponentially in t. Since h(AI, c, T()) = c,T(c)-af/ j holds, the condition 
h t la, < const is fulfilled and (3.18) holds on [1, T(c)]. The constants co, c1 > 0 
can be chosen arbitrarily; however, the constant in (3.18) is an increasing function of 
c2 + c2. 

We now compute the number of steps N(c) which is necessary for integration on 
the interval [1, T(c)] if hi h(AX, c, ti) is chosen. Therefore we set 

(3.20) N(l?) N1() + N2(c-), 
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where N1(c) is the number of steps in [1, y] and N2(c) is the number of steps in 

[y, T(c)]. Obviously 

(3.21) N1(e) SY 
Co C 

and 

(3.22) N2(0) hi[h= 
+ 

tjE[y,T] 
hi+ hi 

h1+1 fT(e) dt 2 'Y 
+ 

?max hi?- exn. y+ _ 

tc[y,Tj hi h(X, ,t) xi 2 2 a+ 1 

since max tj[yT(E)] hi+I/hi < exp(c IX I /2) holds. From (3.21), (3.22) we conclude 

(3.33) N(e) = 01\X) 

A constant step-size algorithm would need 

(3.24) Nconst(T ) T(?-) 

min r,e T) ) 

steps because 

max I (Hj(X, to, hconst)l)i |s const(l + hTa max Ili+ /21 tj+1 Ts 
i ~~~~~~~~~~~\ 2 i a ?/ 

holds, where hconst (h)A- 1 is a sequence of constant step sizes. 

Therefore the step-size sequence h given by (3.19) is very efficient and the reason 
is that no condition like hmax/hmin < const is required. We remark that h equidis- 
tributes the local error. 

The problem (3.1), (3.2) can be regarded as a model for the decaying solution 
components of boundary value problems on 'long' intervals, and now we look at the 
increasing components, which can be modelled by 

(3.25) Zf = tJtaz + taf(t), I S t < T, ae ,> O, T=- T(?), 

(3'.26) Z(T) z Z- 

where X = I + iW2 E Q and Q is again a compact subset of {z E C I Re z > 0). We 
again use the Box-scheme to approximate (3.25), (3.26) 

(3.27) 1 - '=-ta+l/2(z+1 + z) + tl/2 Ji+l/2, i 0; ZN= Z, 

where 

(3.28) to = 1 < t1 = to + ho < ... < tN-1 = tN-2 + hn-2 < tN 

= tN-I + hN-I = T(c) 

holds. 
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The solution of (3.27) is given by 

(3.29) zi = Yi,N- (co, h)z + (H+ (co, tN, h)f )j, 
where 

N-1 h ta, /2fi+I 
(3.30) (H+ (w, tN, h)f) =- 1 Yj/2fj?/2 y-(w, h), i < N- I 

j=i 1 + 2 tj,+I/2 

and (H+ (W, tN, h)f)N= 0. 
Since the increasing components are scaled down by the asymptotic boundary 

conditions at t = T, we disregard the convergence of the zi to z(ti). Stability follows 
as in Lemma 3.2. 

LEMMA 3.3. LetNf (fi+/2)7ff-i'. Then for every sequence h = (h )JN-. 

(3.31) (H+(w, tN, h)f)j j const max [1+1/21 (I + ? hjtj+I/2 

holds for i ? N uniformly for co E U. 

Finally we prove 

LEMMA 3.4. Assume that ti < tj ? T(?) and that h,, h(X, ?, t,, O 1 Re X > 0. 
Then I Yjj-I(X, h) ? exp(-c(tj - ti)), and c c(X) is bounded on U. 

Proof. Let z = z1 + iz2, zI > 0. Then 

1-Z 2 4z1 exP(-4 z1 ) 

1?z 1?z~~~~~2 ~1? z2 

holds. This estimate has been used in de Hoog and Weiss [6]. For X X1 ? iX2 we 
obtain 

Since |1 ? (X/2)hktk?l/2 2 < c(X) for tk ? T(c) holds, we get 

1 y I(X, h) Is exp - 
221 '' 

? exp(-c 2hk) ? exp(-c(t, -ti 

k=i t 

4. Linear Boundary Value Problems. We consider 

(4 .2) Bx ( 12) k k1, 

(4.3) S(T)x(T)= T 

where A fulfills (2.4), (2.5), B is an r_ X n-matrix, ,B E Rr- and f fulfills (2.13) with 
O > c \I the r+ X n-matrix S(T) fulfills (2.29), (2.30) and T T(c) as in (2.23). 
This simple case is considered as a model for problems where A depends on t. 
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The Box-scheme has the form 

(4.4) xi?l- xi _ A ti ( + xi) + to,12f172, i = 0(l)(N - 1), 

(4.5) Bxo - , 

(4.6) S(T)xN = a(T), 

where the partition 1 {ttO tl, ... , tN- 1' tN} fulfills (3.4)(a) and h (hi)fN231, hi > 0. 
A fulfills (2.4). We employ the transformation 

(4.7) = Eu1 

and get 

(4.8) ' h = t a?l/2(U ?, + ui) + t /2E - Il/2, i = 0(l)(N - 1), 

(4.9) BEu 0 -, 
(4.10) S(T)EuN -a(T). 

We want to derive an existence and stability theorem for (4.8), (4.9), (4.10). As de 
Hoog and Weiss [7] did for the continuous case we split ui into 

+ E E'( ( f1?/2) ~r 
(4.11) (a) ui 

- (b) Ef?i+1/2= (E-'f, )j}r 

and get employing (3.6) for u- and (3.29) for u+ 

(4.12) uj= [ yr? +(J h)j +[yo'>(J h)eJJL 

+ (H(J, to, tN, h)E'f), 

where for any k X k matrix P whose eigenvalues have positive real part 

(4.13) Ynm(P, h) Ii (Ik + 2hjtj+l/2 '(Ik- 2 hjtj+I/2) m n, 

Yn+I,n(P, h) -I, n >-I 

holds and the operator H is defined as 

(4.14)(a) (H(J, to,tN,h)z)i= -(H+ (J+ tN 
h)z+)i| z= Z ) 

and 

(4.14)(b) (H+ (J+, tN, h)z )i 
N-I 1 -1 

= - N hyr(J+ h) (I+ 2ht1 tja+ I/2Z++ /2 

JJ?,-i\ 211? j1/2!J 12j12 
1=J 

(4.14)(c) (H (-J-, t,, h)z )i 

= Yr _l(J-h )(I- 2 hj tjc,+ I/2)tj+ 112ZJ+ 1/2, 
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where z+ = (z+ l/2)N-13, Z-= (Z-?l/2)lN=- and Z'/2 E Cr?,zy?l/2 E Cr- has been 
set. Here (H+ (J+ , tN, h)z+ )N = 0 and (H(-J-, t1, h)z)1 - 0 hold. These defini- 
tions make sense because (I + TJ+ )-1, (I -J-)-l exist for T > 0. 

In order to get bounds for the defined difference operators, we use the following 
representation of a matrix function 

(4.15) 21(P) = p(X)(XI - P)_ dX, 

where the contour Fp encloses all eigenvalues of P. 4 is assumed to be analytic. (4.15) 
has been used by de Hoog and Weiss [6] in a similar context. 

If all eigenvalues of P have positive real parts, we get 

(4.16) ln,m(P, h) =2 Yn,m(X h)(XIk - P)-d' , 

where Yn is defined in (3.4) and 

I r(H+ (WI tN, h)(wI -J+) 1z), dw 
(4.17) (H(J, to, tN, h)z)i 1 f'T H + N ( 

Jr (H(-X, to, h)(XI - J) Z-). dX 

where r+ C {z E C I Re z > 0), rhC {z E C I Re z < 0) holds. Since 

(4.18) max 11(wI - J+ )' 11, max II(XI - J-)'1 I s const, w E r+ X Er ~ 
the estimates given in Section 3 can be used because they were formulated uniformly 
for -X, w in compact subsets of the left half plane. 

By evaluating (4.12) at the boundaries (i 1, i N) we get the block system 

(41) BE[YQN1 I(J h)] BE[eI](: 

s(T)E O] S(T)E[ Y 
0 
(Jh)] 

,8 /BE(H(J, to ItN, h)E-lf )O 

a(T)- S(T)E(H(J, to, tN, h)E'f)N! 

We assume that (2.1), (2.2), (2.3) with A(T) A has a unique solution for all 
f e C([1, oo]), ,B & Rr-. Therefore (2.15) holds and implies that 

BE Je] 

is nonsingular. From (2.30) we conclude that S(T)E[O] has a bounded inverse. From 
(4.16) we conclude that 

(4.20) 1YO,rN-I(J , h ) s const max I YO,N-I(w, h) I< const 

and 

(4.21) 11YOr-N- I (-J , h) I Is const max I YO,N- I(-X h )I 
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Now let X be the eigenvalue of J- which is nearest to the imaginary axis, such that 
Re X = -Xmi and take F such that 

(4.22) dist(Th, X) = 8 and dist(Th, {z E C I Re z = 0)) = Xmin -6 

holds. We now choose h = (hi)'--O' such that hi < h(X;\ -8 , ti) defined in 
(3.19). 

Because of Lemma 3.4 

(4.23) max I Yo,N-I(-X, h) | o(l), ?- 0, 

holds. Therefore, for ? sufficiently small H YOrN- -(-J- h)l can be made sufficiently 
small such that the block system (4.19) has a unique solution , 

(4.17) and the Lemmas 3.2, 3.3 yield 

(4.24) max HI(H(J, 1, T(c), h)E-lf)ill const max f1+?l/2H' 
i=O(l)(N- 1) i=O(1)(N-1) 

and the stability estimate 

(4.25) max 11 xi 11 < const(II/311 + 11 (T(c))II + max 11 f+ 1/21) 
i=O(l)N i=O0(l)(N -1) 

follows. 
The local discretization error tia+/2'i? 1/2 is again defined as 

(4.26) ta I = x(ti+) -x(ti) _ Ata (x(t) + x(t)) 

t +a/2f1+0/2, 1 O(1)(N - 1), 

such that the global discretization error 

(4.27) ei = x(ti) -x 

fulfills the discrete boundary value problem 

(42)ei,1 - e. 
At 

h, 2t,2+/2(e1?1 + ei) + ta / i 0(l)(N -1), 

(4.29) Beo = 0 

(4.30) S(T)eN = 0. 

From (4.26) we obtain 

(4.31) max 11ei11 s const max li+41/2lI, 
i=O(l)N i=O(l)N 

where / = (/1?-/2)l%1 has been set. 
As in Section 3 we obtain 

(4.32) Il li+ 1/2 11 - const hi t[ 1 lX'''ll [,j,.j + ,]+ llx X" ti,ti+H 1 
Li+ 1/2J 

assuming that (2.13) holds with F, F', F" E C([1, ox)) n L o([l, x]). Now let a(T) 
= 0. Since 

llx(t)ll < Ily(t)ll + Hlx(t) -y(t)ll < Ily(t)ll + constHlS(T)y(T)I 
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holds, where y is the (unique) solution of the 'infinite' problem (2.1), (2.2), (2.3) with 
A(T) _ A, we get 

(4.33) IIx(t)I| ? const( ( IIF(K )I11,1 ? exp a) ex( + 1 ?) 

+ IIS(T)y(T)II)- 

This follows from (2.14), (2.28). By using the differential equation (4.1), we derive 

(4.34) II?i+1/211 'const ( ti exp(- ain+ ) )ti +)) ?O(E). 

Since hi < h(Xmin - 8, , ti), we obtain 

(4.35) max llelI = 0(?). 
i= O(1)N 

The estimate (2.14) for y(T) gives a bound for the total error 

(4.36) max lIy(ti) -x11 < const(c + exp(- (/min T(eY) 
a = O(e). 

i=O(1)N \a + 1 

Again y solves the 'infinite' problem and xi are the solutions of the Box-scheme for 
the 'finite' problem on [1, T(c)]. 

We briefly investigate linear problems where the coefficient matrix A depends 
on t. 

The Box-scheme for the approximating 'finite' problem is 

(4.37) -A(ti+12)(Xi+l + Xi) + ta11a2fi+1/2 h t+ 1/2 ~ ~ + 1)? i?I21i2 

- O(1)(N - 1), 

(4.38) Bxo - /, 

(4.39) S(T)XN = a(T), T=- T(?) = tN- 

For the n X n-matrix, A E C([1, oo]) is assumed to hold and A(oo) = lim,,.A(t) 
has the Jordan form J obtained by 

(4.40) A(oo) - EJE-1, 

and J has the block structure (2.5). Again we set 

(4.41) xi Eu 

and define 

(4.42) G(t) = E-'A(t)E -J; G(t) O-> , t x->o. 

We use a perturbation approach for the derivation of an existence and stability 
theorem and rewrite (4.37), (4.38), (4.39) 

(4.43) [ 4tg?1/2(Ui+, + ui) + i+1/2G(ti+l/2)(Ui+1 + ui) 

+ t+ a2E -ti + 12 i=0(l)(N N-1), 
(4.44) BEuo /, 

(4.45) S(T)EuN =(T). 
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The general solution of (4.43) can be written as 

(4.46) u. = [ l+ +[yr-(j~ h)eJj& 

+ (H(J, ti, tN, h)Gu)i + (H(J, tf, tN, h)E-lf)i. 

(4.47) (du)i+1/2 = IG(ti+?12)(Ui+l + Ui), du = ((u)i+ 1/2) i 

has been set. + E cr+ and c E Cr- hold. 
From (4.17) and the Lemmas 3.2 and 3.3 we get 

(4.48) max II(H(J, tI, tN, h)Gu)II ?l <constlIGII [t, I,N 
max Il uil, 

i=I(I)N i=I(I)N 

where hi < h(Xmin - 8, E, ti) is assumed to hold. Xmin > 0 is the modulus of the real 
part of that eigenvalue of A(oo) which is closest to the imaginary axis of all 
eigenvalues of A(xo) with negative real part. 

We define the operator 

(4.49) H(h, tl, tN) Cn(N1) Cn(N1?l) 

such that, for xi E C n(N 
- 

1)X ( )N II 

(H(J, tI, tN, h)x~), 
(4.50) H(h, tI, tN)X= 

(H(J, t1, tN, h)x) N 

holds. From (4.42), (4.48) we get 

(4.51) II H(h, tI yGI<const IIGI Izty 

where II - denotes the max-norm for vectors in the respective C' or the associated 
matrix norm. Therefore the operator 

(4.52) I - HI(h, t1, tN)G: Cn(N-I+1) Cn(N-I+1) 

is invertible for t, < tN sufficiently large. 

The existence theorem for (4.37), (4.38), (4.39) follows by proceeding as de Hoog 
and Weiss [8] did for the continuous 'finite' problem (2.23), (2.24), (2.25). The 
stability estimate (4.25) holds for variable coefficient problems too. 

THEOREM 4.1. Assume that A E C([1, oo]); A', A" e C([l, xo)) n L,([l, oo]) and 
that f fulfills (2.13) with F, F', F' E C([l, oc)) n Lo([l, x]). Let, for some ? suffi- 
ciently small, T = T(c) = tN as in (2.23), and assume that 

(4.53) hi <co E, ti < c C> 0, 

(4.54) h re t - a exp in-a 
8 

ti+ 
I Y i T( ) 

holds for some fixed y. Then if the matrix (2.18) is nonsingular, the Box-scheme (4.37), 
(4.38), (4.39) is uniquely soluble and 

(4.55) max IIxi -y(ti)I= 0(?) 
= O(f )N 

holdsv for tu(T) =0. 
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For the remainder of this section we assume that equality holds in (4.53), (4.54). 
Then the number of steps N = N(c) fulfills 

(4.56) N() - c * c-, - 0. 

The condition number of a nonsingular matrix A is defined by 

(4.57) x(A) = 11 Ail 11A`II. 

The condition number of the difference operator Lh (given by (4.37), (4.38), (4.39), 
where both sides of (4.37) are divided by ti 1/2)' fulfills the estimate 

(4.58) x(Lh) < const const N(c) 
.~~~~~~~~~~~ 

since 

(4.59) hILhhI s max(hIB II IIS(T(c))hI, max 2 Ahl(l I) 

and because the stability estimate (4.25) implies Ii L-II - const. (4.58) is a very 
moderate condition number, and therefore (4.37), (4.38), (4.39) can be safely solved 
by Gaussian elimination with partial pivoting using for example the code 
SOLVEBLOCK (de Boor and Weiss [5]). 

5. Nonlinear Problems. We consider the 'infinite' problem 

(5.1) y, = t a 
t, Y ), I -- t < xo, a 0 O 

(5.2) b(y(l)) = 0, 

(5 .3) y E C([1,X ]0), 
and the Box-scheme 

(5.4) ih i= ,+112f(ti+1129 2(Xi+l + xi)), i = 0(l)(N - 1), 

(5.5) b(xo) = 0, 

(5.6) S(T)xN = S(T)y*(o,), 

where T = tN holds. The asymptotic boundary condition S(T) is set up as described 
in Section 2. 

As mentioned in Section 2, 

(5.7) f(x, y*(x)) - 0 

has to hold. We now assume that y*(oo) is an isolated zero and that fy(oo, y*(0x)) 
has the Jordan form J obtained by 

(5.8) f1Y(xO y*(oo)) = EJE-11 

where J fulfills (2.5). Moreover, we assume 

(5.9) bR(, y*(R))); f(t, y*(al )) a O(eLiscit (())cti ), u > usnR 

(5.10) b: R' R'-; b, by are locally Lipschitz continuous in R', 
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and that the problem (5.1), (5.2), (5.3) has an isolated solution y*(t) y*(x) as 
t -x o. The isolatedness means that the linearized problem 

zf = fy(t, y*(t))z, by(y*(l))z(l) = 0, z Ez C([ 1, xo]) 

has only the trivial solution z -0. We set T= T(c) as defined in (2.33) and 
conclude from de Hoog and Weiss [7] that the approximating problems 

(5.11) x =t f(t, x), 

(5.12) b(x(l)) = 0, 
(5.13) S(T)x(T) = S(T)y*(xc), 

with (2.29), (2.30), are locally (around y*(t)) uniquely soluble for T(c) sufficiently 
large and 

(5.14) 1X -YH1[l,T] < constllS(T)(y(T) -y*(x))ll < constHlS(T)Hc, 

holds. Possible choices for S(T) are discussed in Lentini and Keller [10]. 
We apply the nonlinear stability theory given in Keller [9] with - as a grid 

parameter. The result then follows from the stability estimate (4.25) for linear 
problems, and we merely state it in 

THEOREM 5.1. Under the given assumption the Box-scheme has (for - sufficiently 
small) a locally unique solution which converges to the locally unique solution of (5.4), 
(5.5), (5.6) if a step-size sequence hi fulfilling 

(5.15) hi <c cr, ti < Y 

(5.16) h i <,- rt ex 2(a + 1) <,+ ti < T(?-) 

is chosen. The estimate 

(5.17) max 1I y(ti) 
- 

xi1 
- 0(?), 0, 

i=O(l)N 

holds. The Newton procedure for (5.4), (5.5), (5.6) is quadratically convergent for 
starting values in a sphere 

K x Cn(N 1) X -< 

where ( > 0 is independent of ?. 

The mesh-size sequence (5.16) can be employed on the whole interval [1, T( -)] 
(since h(Xmin - 8, E, ti) < VETy-aexp(((Xmin - 8)/2(a + 1))ya?l) holds on [1, -y]); 
however, there might be more efficient choices on that interval where y is not close 
to y*(x). 

6. Higher Order Methods. It is intriguing to use symmetric, A-stable (higher order) 
collocation methods (see de Boor and Swartz [4], Russell [17] and Weiss [20]) for the 
solution of (5.11), (5.12), (5.13). We define 

(6.1) t1= ti + phi, O < PI < P2 < < Pk-I <Pk<, 
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and require that the pi are symmetric about l. We do not include pi 0, Pk = 1 (for 
example Lobatto points) in this discussion. However, the results carry over to this 
case if the mesh-size sequence hi fulfills hjtj+ I? const as T T(e) -4 oo where 
const is sufficiently small but independent of e. If mesh-size sequences which grow 
faster are admitted and if the endpoints 0, 1 are collocation points, then instabilities 
can occur in the exponentially increasing components in the case a > 0. 

This is illustrated by the homogeneous problem 

z 2tz, z(T) z. 

The trapezoidal rule has the solutions 

N- I 1 
-jtj+ I 

If hi> 1+p for p> 1, i<j N- 1, then 1(1- h1tj+ )/(l + hjtj) > p>1 
holds. Keeping t = ti (and the mesh on [1, ti1) fixed implies I zi I > (p)f-I -l zo as 
N -x o (T -x oo). This exponential instability does not occur when using the 
midpoint rule. 

We write the k-stage collocation method for (5.11), (5.12), (5.13) as a system of 
difference equations 

_ -x k 

(6.2) ih = aj.t jti,Xi) i-O (l)(N-l1),j-=l(l)k, 

_ -x k 

(6.3) Xi+1 xi = b^tf ZfAtil, xJ, i = 0(l)(N - ) 
ih 1=1 

(6.4) b(x0) = 0, 

(6.5) S(T)xN = S(T)y*(oo), T= T(E) 

where the xii are the approximations to x(tij) (resp. to y(tij)). From Ascher and 
Weiss [2] we get 

( 6 .6) a j, -p ( pO ) bi TIM (1 , 

where (P is the interpolating polynomial (of degree k) which fulfills 

(6.7) Tp(0) =0; cl(pi) = Qij, jI l(l)k. 
A" A A1 A 

We set A = (ajl)j=1(I)k;1=1(1)k' b = (b1...,b)', where the superscript ""' denotes 
transposition. The eigenvalues of A have positive real parts. In particular the 
Gauss-schemes belong to this class (pi are the zeros of Gauss-Legendre polynomials) 
and the Box-scheme is the one-stage Gauss-scheme (with p 4 - I). 

At first we investigate the stability of 

(6.8) = Z ti?/2 dto ajlyil + t,lf2fi1 YOY, 
hi 

i+ 1/2 1/2 fjj, 
=1 

k( 

(6.9) YA byi Y t 
hi +1/2~~ b1y1 ? +12f 
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where Re X > 0; yij, yi, fij, fi c C holds. Setting 1 = (1,... 1)', Yi (Yil Y.ik) 
fi ( l**f.k)', we obtain 

(6 .10) Yi= ( I + xht+2A ) A lyi + +hiti+ A) f, 

(6.11)(a) - = ( -Ahitia172b'(I + hhtit72a) 
t i 

-Xht 7 /2b(I ? Ah1ti 1/2A ) i+ hiti+ 1 /2f 

The function 

(6.1 1)(b) y(z) 1 -I z'(i t? i 

is the growth function of the collocation scheme and fulfills 

(6.12) I -y(z) I< 1, Rez > 0 (A-stability), 

(6.13)(a) Iy(z) I 1 =lRez= orz= x, (Rez?0), 

(6.13)(b) lim (I1-I -y(z) 1)/1 Z 1' >? for Re z > ?, I| Rz| c, zoo ~ ~ ~ ~ ~ ~ ~~I ez 
z -_*0ooe 

(6.14) y(z)= ez +O(zk+l), z -O 0, Rez z 0, 

(see Ascher and Weiss [2]). 
From (6.1 1) we get 

i-I I 1i- 
5 Yi =n (Z + A z(-zjI + z1 + +fj Y(Z1 ) 

m=0 j=0 m=j+ I 

where zj = -X hjtJa+ 1/2 has been set. A simple calculation shows that 

(6.16) zI( z| b' I(I + zA)III II fjIl + I f) 

sZmax (Iz I lfII fj jl) Re z 2, 0, I Im z/Re z< c. 

Using (6.12), (6.13), (6.14), we obtain 

(6.17) 1 
z 

I<const(lIY(Z)I), Rez> 0, ezCC. 

Proceeding as in Lemma 3.1 gives the stability estimate 

(6.18) max(IIji-Il, I y) 

s const(IY-I + max [(I + hjtjc+ I/2) 2(hjtj+ I/2 1 j11 ?+fj 

which should be compared to (3.13). Now assume that hjtj?+I/2 < const holds on the 
whole interval of integration. Then we get stability for 

(6.19) t a + tmaI 

(6.20) h =- b,tayi, + t,a fim, 1s m s k, 
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by the following perturbation approach: 

(6.21) ht Xi+?1/2 2 ajyi=1 

kt ta - a t ' '+, taBj 
a(ta ( t/ Y41/2 t imi 
xi? 1/2z al/k ta?7 Yjl ta i 

k 

(6.22) h K +1/2 

-Xt,a+1/2( 2 j bl tai+ 1,/2 )Yi + t,a 
m 

f ) 

=I ti+ 1/2 ti+ 1/2 
a s~~~~~t 

Since tO /t+ 1/2 ? const holds, estimate (5.18) gives 

(6.23) max(l- 11, 1yi1) 

(const +max ta 
' I/ 2 max max(llj?Il,y'11) 

+ max (hjtj+1I2 7L ?I + fj1)) 

Choosing hi < ((a - 1)/Pk 2 )tj, where a = (1 + 8)1/a, we have 

I (tj - tj+1/2)/tg+172 1< | . 

Therefore if 

(6.24) h1 s min(dotj, dltj-a), do sufficiently small but independent of t 

holds, we get the estimate 

(6.25) max(I I'IIl, Iyi |) s const(|j + max (hjtj+?1211<II 1+ 1j1)) 

for the unique solution yij, yi of (6.19), (6.20). The stability consideration for the 
exponentially growing components are analogous to those following (3.25), (3.26). 
This stability result, obtained for scalar initial value problems can be extended to 
variable coefficient boundary value problems using the methods of Section 4. 

In the sequel we assume that the functionf (in (5.1 1)) fulfills 

(6.26) fJ C (CX(1, y*(x)) 
and that the assumptions onf, b, S, y of Section 5 hold. 

We define the local discretization error ~t 'lij tia I/2 ii of (6.2), (6.3), (6.4), (6.5) as 

x(tij) - X(ti) 
k k 

(6.27) _2 I^taf(ti, X(tii)) = tali 

X(t1?1) -x(ti) - k a (6.28) bta12i 
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where x(t) solves (5.11), (5.12), (5.13). A lengthy calculation (see Axelsson [3], Weiss 
[20]) gives 

(6.29) 1 lij II < const hi 1 x(k?1) '[ 

ii 

(6.30) 14liI S const hik+1 * Ix(k?2)I[t,t?] 
i+ 1/2 

(6.30) holds because we only admit symmetric collocation points. We obtain 

(6.31) Il/JIl1 < const hktc exp (- + I ,)1 t, 2 y, 

k+ 1&+ I)a (Gmin - 6) + (6.32) Ili II1 const hZ t(k?)exp( +1 t ti y, 

and 

(6.33) Illijl = 0(hk), li, 0 o(hk'), 1 s t < Y 

The stability estimate (6.25) implies that we may equidistribute the functional 

(6.34) hjt711411 + 14li1 < const h+1(?+')aexp( 
mi +n1 t1a,)' t -y, 

(where li= (li',-, liJ)' holds) as long as (6.24) holds. Requiring a total accuracy 
O(E-), we obtain bounds for the meshsizes 

(a) hi s c0E/(k+ 1) 1 t ? s y, 

(6.35) 1 Xmin - a?i 
( )(b) hi ; El/(k+')t- aexpt -k +<l(+I t ti < T(E)1 i (k?+ 1)(a + 1) 1 

where T(E) is defined in (2.32), (2.33). The number of meshpoints Nk(E)- 

const ll/(k? 1), the condition number of the linear set equations (6.2)-(6.5) Xk(Lh) 
-const Nk(E) (if equality holds in (6.35)), and we get 

(6.36) max max(Il y(tij) -yij 11, 11 y(ti1) -=yi O(E), E 0, 
i=O( 1)N 
j= I(I)k 

for the locally unique solution yij, yi of (6.2), (6.3), (6.4), (6.5). 
Using the superconvergence property of certain collocation schemes at the knots 

ti, we can improve the bounds for the meshsizes (6.35). Let 

(6.37) W(S) (s - P1)(s - P2) ... (S Pk) 

We say that co E Pr, r> 0 if 

(6.38) fs| c(s) ds = 0, i = 0(1)(r - 1) and f'srw(s) ds #4 0 
0 0 

holds. Obviously, k + r - 1 is the order of accuracy of the integration formula 

k 

f?p#(s)ds~ t aklc(Pl). 

Applying the collocation scheme (6.2), (6.3) to the scalar initial value problem 

(6.39) Y' = -Xy +f(t), 1 < t,y(l) =y, X = Xmin + iX2 
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where (3.15) holds, we get for the global error ei = Y(t) - yi at the knots 

(6.40) e1 = y(-Xhi)ei + h (l- Xhib'(I- XhiA) 'l), eo = 0. 

From Weiss [20] (or Axelsson [3]) we get 

(6.41) max(I li I , I hib'(I - XhiA li)) s const hi?rIIy(k?r?l)II[t,t ]. 

Using (6.16), we get 

(6.42) ei I s const max (I( + h1) hk+r 11 y(k+r+ 1) 11 [tj]). 

For general a 2 0 we get, for the problem (3.1), (3.2), 

(6.43) e,I?const max hi+ 1 +dy(k?r?) 

if hi fulfills (6.23). 
Using the stability estimate (6.24) and proceeding as in Weiss [20], we obtain 

THEOREM 6.1. Assume that f(t, y) E Ck?r(C'(1, y*(oo))), that the collocation scheme 

is A-stable and that c E Pr. Then, for E sufficiently small, the collocation equations 
(6.2), (6.3), (6.4), (6.5) with 

(a) hj S COE 1(k+1), i S t s y, 

(6..44) (b i<E1k1 i0x Xmin - i a?1\ y ?tj T ( 
) 

( ) j J Pf ~(k + r)(a + 1) ' )' Y j () 

where T(E) fulfills (2.33), have a locally unique solution x1j, xi in a neighborhood of 

y(ti), y(ti) (y(t) solves (5.1), (5.2), (5.3)) and 

(6.45) max 11 y(ti) - xi O(E), E 0, 
i=O(1)N 

(6.46) max II-y(ti1) -yjII = Q(E(k+1)/(k+r)) -> 0, 
i=O( 1)N 
j= I(I)k 

holds. The Newton procedure for the collocation equations is quadratically convergent 
from a sphere of starting values which does not shrink as E - 0. 

The number of necessary meshpoints Nk(E) fulfills 

(6.47) Nk) ? ~/kr)( m%ex ( <(in(?) 1~))+. < E-1(k 
Xmi ,,, 8 

ex 
k + r 1(kr- a + 

+ 

and the condition number of the linearized collocation equations xk( Lh) 

const N(E), E -- 0 if equality holds in (6.44). 
For Gauss points r = k holds and the bound (6.44) is best possible. 

7. A Numerical Test Problem. As a test problem we solve: 

(7.1) w(iv) = -1 + exp(-2w), 1 s t s ox, 

(7.2) w"(l) = 0, w"'(1) = 1, 

(7.3) w E C3([l, xc]), 

using the devised mesh-size sequences. This problem, which models the deflection of 
a pile embedded in soil was investigated by Lentini and Keller [10]. 
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The obvious transformation 

(7.4) y=w, Y2 = w', y3=W", y4= w"; y (Y1, Y2, Y3, Y4) 

gives the four-dimensional problem 

Y2 

(7.5) Y'=f(y) 
Y3 

< t< 

-1 + exp(-2y1) 

(7.6) [?0]Y(1)= ( 

(7.7) yEC([l,x]). 

The (only) stationary solution y. is given by 

(7.8) Yoo = (0,0,0,0)', 
and the eigenvalues of the Jacobian fy( yo) are 

(7;9) XI( )l/4ei(21-I)ir/4; 1=1,2,3,4, 
so that 

(7.10) Re X2 = Re X3 = -2-3/4 Re X1 -Re X4= 2-3/4 

holds. Since the imaginary parts of X23 are nonzero, we have to expect (exponen- 
tially decaying) oscillating solutions. 

We approximate (7.5), (7.6), (7.7) by the finite problem 

(7.11) x' f(x), t < T(c), 

(7.12) 0 0 0 x(l) = 

(7.13) [ 
0 

0 
00]X(T(e)) = (0) 

The boundary condition (7.13) is admissible (i.e., it fulfills (2.29), (2.30)), however it 
is not optimal in the sense of (2.35). 

Calculations using the optimal boundary condition have been performed by 
Lentini and Keller [10]. 

From (2.33) we get 

(7.14) T( E) = 23/4 In 

where 

(7.15) T = max 11 y(t) exp(23/4t)11 

holds. Because (7.5) is autonomous and because all eigenvalues XI are simple, no 
algebraic factors occur and 8 (in (2.31)) can be set to zero. For the following 
computations the code COLSYS (see Ascher, Christiansen and Russell [1]) was used. 
All computations were performed on the CDC-CYBER 74 of the TU Vienna. An 
approximation to p was computed numerically by solving (7.11)-(7.13) using 7-stage 
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collocation at Gaussian points with equidistant grid points and meshsize h = 0.2. It 
turns out that p t 14 holds. For k-stage collocation at Gaussian points we use the 
mesh-size sequence 

(7.16)(a) hj =E ? / expt ti) < tj < () 

(7.16)(b) hNk(e T(E) - tNk(e)-1 

Again, Nk(8) denotes the number of meshpoints in [1, T(8)]. 
For the following calculations we choose ? 10-2,10-3 ...,10-7 and k = 

1,2, ... , 6. Table 1 lists T(e) (rounded). Obviously 

(7.17) T( - ) = T(e) + 23/41n 10 T(e) + 3.87 

holds. Tenfold accuracy is achieved by increasing the integration interval by 3.87 
units. 

Table 2 lists the number of meshpoints Nk(8) and the ratios 

(7.18) Tk() -N (wk) N(8 k). 

From (6.47) we conclude that 

(7.19) Tkk(E) iol/2k 

holds. The values 101/2k for k = 1,... .,6 are given in the last row of Table 2, and it 
seems that the convergence of Tk(e) to 101/2k (as - -? 0) gets slower as k increases. 
Table 1 also shows the enormous superiority of high order methods. For k =1 
(midpoint rule) and - = 10-7, 7920 grid points are required while for k - 7 only 60 
grid points are necessary in order to achieve (at least) the same accuracy (in fact 
Table 3 shows that the absolute error decreases for constant - and increasing k)! 

Table 3 contains the absolute errors 

(7.20) ek(8) - max IIy(ti)-xi(E,k)II 

(where xi(-, k) solves the k-stage collocation equations (6.2)-(6.5) for (7.1l)-(7.13)) 
and the corresponding (rounded) orders of convergence 

(7.21) ln( ej(E)) 1n 10. 

Solutions for k = 1, 8 = 10-5, 10-6 could not be obtained since the storage require- 
ments were too large. 

As mentioned before the absolute error for fixed 8 decreases as k increases (except 
for 8 = 10-4, k = 4,5). This was also observed by Ascher and Weiss [2, Table 4.2] in 
the case of singular perturbation problems. 

The orders of convergence are even for large 8 fairly accurate for k = 1, 2. For 
larger k and large 8 convergence is faster (than order one in 8) but as 8 decreases the 
orders apparently converge to one. 
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TABLE 1 
Integration intervals 

?: 10 
2 1-3 1-4 1-5 -o6 107 

T (?) 12.18 16. 06 19.93 23.8 27. 67 31.54 

TABLE 2 

Number of mesh points and ratios 

?\ 1 2 3 4 5 6 

|_____ N1(c) T1(c) N2(c) T 2(c) N3(?) T 3(c) N4 (?) T4 (c) N5(c) T5(c) N 6() T 6() 

102 27 3.04 17 1.88 15 1.67 14 1.57 14 1.5 14 1.43 

10 82 2.91 32 1.78 25 1.52 22 1.45 21 1.38 20 1.35 
-4__ 

10 253 3.03 57 1.81 38 1.53 32 1.38 29 1.34 27 1.33 

-5 
10 794 3.14 103 1.78 58 1.52 44 1.43 39 1.33 36 1.31 

-6 
10 2503 3.16 183 1.78 88 1.49 63 1.38 52 1.33 47 1.28 

- 7 
10 7920 326 131 87 69 60 

101/2k 3.16 1.78 1.47 1.33 1.26 1.21 

TABLE 3 

Errors and orders of convergence 

| < ~ ~1 2 ; 3 4 5 - 

e1 e2(? 3e( ) e4 (?) e5 (c) 

.E-2 3.23E-3 1.0 2.68E-4 1.6 2.24E-4 2.8 2.20E-4 2.8 8.OOE-5 2.5 

1.E-3 3.03E-4 1.0 5.60E-6 1.0 3.13E-7 1.7 2.84E-7 1.9 2.84E-7 1.8 

1.E-4 3.05E-5 5.55E-7 1.0 6.OOE-9 0.8 3.30E-9 0.8 3.79E-9 1.4 

1.E-5 5.70E-8 1.0 1.OOE-9 1.1 5.OE-10 1.2 1.45E-10 1.1 

1.E-6 5.OOE-9 [ 8.2E-11 3.OE-11 1.20E-11 

Acknowledgement. The authors would like to thank Professor Uri Ascher (UBC) 
for many helpful discussions which led to a major improvement of the paper. 

Department of Mathematics 
The University of Texas at Austin 
RLM 8.100 
Austin, Texas 78712 

Institut fuer Angewandte Mathematik 
Technische Universitat Wien 
Gusshausstrasse 27-29 
A- 1040 Wien, Austria 



150 PETER A. MARKOWICH AND CHRISTIAN A. RINGHOFER 

1. U. ASCHER, J. CHRISTIANSEN & R. D. RUSSELL, "A collocation solver for mixed order systems of 
boundary value problems," Math. Comp., v. 33, 1979, pp. 659-679. 

2. U. ASCHER & R. WEISS, Collocation for Singular Perturbation Problems I: First Order Systems with 
Constant Coefficient, UBC Technical Report, 1981; also to appear in SIAM J. Numer. Anal. 

3. 0. AXELSSON, "A class of A-stable methods," BIT, v. 9, 1969, pp. 185-199. MR 40 #8266. 
4. C. DE BOOR & B. SWARTZ, "Collocation at Gaussian points," SIAM J. Numer. Anal., v. 10, 1973, 

pp. 582-606. 
5. C. DE BOOR & R. WEISS, ""SOLVEBLOCK"-A package for almost block diagonal linear 

systems," ACM Trans. Math. Software, v. 61, 1980, pp. 80-87. 
6. F. R. DE HOOG & R. WEISS, "The numerical solution of boundary value problems with an essential 

singularity," SIAMJ. Numer. Anal., v. 10, 1979, pp. 637-669. 
7. F. R. DE HOOG & R. WEISS, "On the boundary value problem for systems of ordinary differential 

equations with a singularity of the second kind," SIAM J. Math. Anal., v. 11, 1980, pp. 41-60. 
8. F. R. DE HOOG & R. WEISS, "An approximation method for boundary value problems on infinite 

intervals," Computing, v. 24, 1980, pp. 227-239. 
9. H. KELLER, "Approximation methods for nonlinear problems with application to two-point 

boundary value problems," Math. Comp., v. 29, 1975, pp. 464-474. 
10. M. LENTINI & H. B. KELLER, "Boundary value problems on semi-infinite intervals and their 

numerical solution," SIAM J. Numer. Anal., v. 17, 1980, pp. 577-604. 
11. M. LENTINI & V. PEREYRA, "An adaptive finite difference solver for nonlinear two-point boundary 

value problems with mild boundary layers," SIAM J. Numer. Anal., v. 14, 1977, pp. 99- 111. 
12. P. A. MARKOWICH, Analysis of Boundary Value Problems on Infinite Intervals, MRC TSR #2138, 

1980; also to appear in SIAM J. Math. Anal. 
13. P. A. MARKOWICH, "A theory for the approximation of solutions of boundary value problems on 

infinite intervals," SIAM J. Math. Anal., v. 13, 1982, pp. 484-513. 
14. P. A. MARKOWICH, Eigenvalue Problems on Infinite Intervals, MRC TSR # 2157, 1980; to appear in 

this Journal. 
15. J. B. McLEOD, "Von Karman's swirling flow problem," Arch. Rational Mech. Anal., v. 1, 1969, pp. 

91-102. 
16. C. A. RINGHOFER, On Collocation Methods for Singularly Perturbed Boundary Value Problems, 

Thesis, TU Vienna, Austria, 1981. 
17. R. D. RUSSELL, "Collocation for systems of boundary value problems," Numer. Math., v. 23, 1974, 

pp. 119-133. 
18. R. D. RUSSELL & J. CHRISTIANSEN, "Adaptive mesh selection strategies for solving boundary value 

problems," SIAMJ. Numer. Anal., v. 15, 1978, pp. 59-80. 
19. W. SCHNEIDER, "A similarity solution for combined forced and free convection flow over a 

horizontal plate," Internat. J. Stat. and Mass Transfer, v. 22, 1979, pp. 1401-1406. 
20. R. WEISS, "The application of implicit Runge-Kutta and colfocation methods to boundary value 

problems," Math. Comp., v. 28, 1974, 449-464. 


